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Figure 1: Our synthesized dance video conditioned on the music “I Wish”. We show 5 frames from a 5-second synthesized
video. The top row shows the skeletons, and the bottom row shows the corresponding synthesized video frames. More results
are shown in the supplementary video at https://youtu.be/0rMuFMZa_K4.

Abstract

We present a learning-based approach with pose per-
ceptual loss for automatic music video generation. Our
method can produce a realistic dance video that conforms
to the beats and rhymes of almost any given music. To
achieve this, we firstly generate a human skeleton se-
quence from music and then apply the learned pose-to-
appearance mapping to generate the final video. In the
stage of generating skeleton sequences, we utilize two dis-
criminators to capture different aspects of the sequence
and propose a novel pose perceptual loss to produce nat-
ural dances. Besides, we also provide a new cross-modal
evaluation to evaluate the dance quality, which is able
to estimate the similarity between two modalities of mu-
sic and dance. Finally, a user study is conducted to
demonstrate that dance video synthesized by the presented
approach produces surprisingly realistic results. Source
code and data are available at https://github.com/
xrenaa/Music-Dance-Video-Synthesis.

1. Introduction
Music videos have become unprecedentedly popular all

over the world. Nearly all the top 10 most-viewed YouTube
videos1 are music videos with dancing. While these mu-
sic videos are made by professional artists, we wonder if an
intelligent system can automatically generate personalized
and creative music videos. In this work, we study auto-
matic dance music video generation, given almost any mu-
sic. We aim to synthesize a coherent and photo-realistic
dance video that conforms to the given music. With such
music video generation technology, a user can share a per-
sonalized music video on social media. In Figure 1, we
show some images of our synthesized dance video given
the music “I Wish” by Cosmic Girls.

The dance video synthesis task is challenging for various
technical reasons. Firstly, the mapping between dance mo-
tion and background music is ambiguous: different artists
may compose distinctive dance motion given the same mu-

1https://www.digitaltrends.com/web/
most-viewed-youtube-videos/
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sic. This suggests that a simple machine learning model
with L1 or L2 distance [19, 35] can hardly capture the re-
lationship between dance and music. Secondly, it is techni-
cally difficult to model the space of human body dance. The
model should avoid generating non-natural dancing move-
ments. Even slight deviations from normal human poses
could appear unnatural. Thirdly, no high-quality dataset is
available for our task. Previous motion datasets [18, 33]
mostly focus on action recognition. Tang et al. [35] pro-
vide a 3D joint dataset for our task. However, we encounter
errors that the dance motion and the music are not aligned
when we try to use it.

Nowadays, there are a large number of music videos with
dancing online, which can be used for the music video gen-
eration task. To build a dataset for our task, we apply Open-
Pose [4, 5, 42] to get dance skeleton sequences from online
videos. However, the skeleton sequences acquired by Open-
Pose are very noisy: some estimated human poses are inac-
curate. Correcting such a dataset is time-consuming by re-
moving inaccurate poses and thus not suitable for extensive
applications. Furthermore, only L1 or L2 distance is used
for training a network in prior work [19, 35, 43], which is
demonstrated to disregard some specific motion characteris-
tics by [24]. To tackle these challenges, we propose a novel
pose perceptual loss so that our model can be trained on
noisy data (imperfect human poses) gained by OpenPose.

Dance synthesis has been well studied in the literature
by searching dance motion in a database using music as
a query [1, 16, 31]. These approaches can not generalize
well to music beyond the training data and lack creativity,
which is the most indispensable factor of dance. To over-
come such obstacles, we choose the generative adversar-
ial network (GAN) [12] to deal with cross-modal mapping.
However, Cai et al. [3] showed that human pose constraints
are too complicated to be captured by an end-to-end model
trained with a direct GAN method. Thus, we propose to use
two discriminators that focus on local coherence and global
harmony, respectively.

In summary, the contributions of our work are:

• With the proposed pose perceptual loss, our model can
be trained on a noisy dataset (without human labels)
to synthesize realistic dance video that conforms to al-
most any given music.
• With the Local Temporal Discriminator and the Global

Content Discriminator, our framework can generate
a coherent dance skeleton sequence that matches the
length, rhythm, and the emotion of music.
• For our task, we build a dataset containing paired mu-

sic and skeleton sequences, which will be made public
for research. To evaluate our model, we also propose
a novel cross-modal evaluation that measures the sim-
ilarity between music and a dance skeleton sequence.

2. Related Work

GAN-based Video Synthesis. A generative adversarial
network (GAN) [12] is a popular approach for image gen-
eration. The images generated by GAN are usually sharper
and with more details compared to those with L1 and L2

distance. Recently, GAN is also extended to video gen-
eration tasks [21, 25, 36, 37]. The most simple changes
made in GANs for videos are proposed in [29, 37]. The
GAN model in [37] replaced the standard 2D convolutional
layer with a 3D convolutional layer to capture the temporal
feature, although this characteristic capture method is lim-
ited in the fixed time. TGAN [29] overcame the limitation
but with the cost of constraints imposed in the latent space.
MoCoGAN [36] could generate videos that combine the ad-
vantages of RNN-based GAN models and sliding window
techniques so that the motion and content are disentangled
in the latent space.

Another advantage of GAN models is that it is widely
applicable to many tasks, including the cross-modal audio-
to-video problem. Chen et al. [34] proposed a GAN-based
encoder-decoder architecture using CNNs to convert be-
tween audio spectrograms and frames. Furthermore, Vou-
gioukas et al. [38] adapted temporal GAN to synthesize a
talking character conditioned on speech signals automati-
cally.

Dance Motion Synthesis. A line of work focuses on the
mapping between acoustic and motion features. On the base
of labeling music with joint positions and angles, Shiratori
et al. [31, 16] incorporated gravity and beats as additional
features for predicting dance motion. Recently, Alemi et
al. [1] proposed to combine the acoustic feature with the
motion features of previous frames. However, these ap-
proaches are entirely dependent on the prepared database
and may only create rigid motion when it comes to music
with similar acoustic features.

Recently, Yaota et al. [43] accomplished dance synthe-
sis using standard deep learning models. The most recent
work is by Tang et al. [35], who proposed a model based on
LSTM-autoencoder architecture to generate dance pose se-
quences. Their approach is trained with a L2 distance loss,
and their evaluation only includes comparisons with ran-
domly sampled dances that are not on a par with those by
real artists. Their approach may not work well on the noisy
data obtained by OpenPose.

3. Overview

To generate a dance video from music, we split our sys-
tem into two stages. In the first stage, we propose an end-to-
end model that directly generates a dance skeleton sequence
according to the audio input. In the second stage, we apply
an improved pix2pixHD GAN [39, 7] to transfer the dance
skeleton sequence to a dance video. In this overview, we
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Figure 2: Our framework for human skeleton sequence synthesis. The input is music signals, which are divided into pieces of
0.1-second music. The generator contains an audio encoder, a bidirectional GRU, and a pose generator. The output skeleton
sequence of the generator is fed into the Global Content Discriminator with the music. The generated skeleton sequence is
then divided into overlapping sub-sequences, which are fed into the Local Temporal Discriminator.

will mainly describe the first stage, as shown in Figure 2.
Let V be the number of joints of the human skeleton, and

the dimension of a 2D coordinate (x, y) is 2. We formulate a
dance skeleton sequence X as a sequence of human skele-
tons across T consecutive frames in total: X ∈ RT×2V

where each skeleton frame Xt ∈ R2V is a vector contain-
ing all (x, y) joint locations. Our goal is to learn a function
G : RTS → RT×2V that maps audio signals with sample
rate S per frame to a joint location vector sequence.

Generator. The generator is composed of a music en-
coding part and a pose generator. The input audio signals
are divided into pieces of 0.1-second music. These pieces
are encoded using 1D convolution and then fed into a bi-
directional 2-layer GRU in chronological order, resulting in
output hidden states O = {H1, H2, · · · , HT }. These hid-
den states are fed in the pose generator, which is a multi-
layer perceptron to produce a skeleton sequence X .

Local Temporal Discriminator. The output skeleton
sequence X is divided into K overlapping sequences ∈
Rt×2V . Then these sub-sequences are fed into the Lo-
cal Temporal Discriminator, which is a two-branch con-
volutional network. In the end, a small classifier outputs
K scores that determine the realism of these skeleton sub-
sequences.

Global Content Discriminator. The input to the Global
Content Discriminator includes the music M ∈ RTS and
the dance skeleton sequence X . For the pose part, the
skeleton sequenceX is encoded using pose discriminator as
FP ∈ R256. For the music part, similar to the sub-network
of the generator, music is encoded using 1D convolution
and then fed into a bi-directional 2-layer GRU, resulting an
output OM = {HM

1 , HM
2 , ...,HM

T } and OM is transmitted
into the self-attention component of [22] to get a compre-
hensive music feature expression FM ∈ R256. In the end,
we concatenate FM and FP along channels and use a small
classifier, composed of a 1D convolutional layer and a fully-
connected (FC) layer, to determine if the skeleton sequence
matches the music.

Pose Perceptual Loss. Recently, Graph Convolutional
Network (GCN) has been extended to model skeletons since
the human skeleton structure is graph-structured data. Thus,
the feature extracted by GCN remains a high-level spatial
structural information between different body parts. Match-
ing activations in a pre-trained GCN network gives a bet-
ter constraint on both the detail and layout of a pose than
the traditional methods such as L1 distance and L2 dis-
tance. Figure 3 shows the pipeline of the pose perceptual
loss. With the pose perceptual loss, our output skeleton se-
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Figure 3: The overview of the pose perceptual loss based on ST-GCN. G is our generator in the first stage. y is the ground-
truth skeleton sequence, and ŷ is the generated skeleton sequence.

quences do not need an additional smooth step or any other
post-processing.

4. Pose Perceptual Loss
Perceptual loss or feature matching loss [2, 8, 11, 15, 27,

39, 40] is a popular loss to measure the similarity between
two images in image processing and synthesis. For the tasks
that generate human skeleton sequences [3, 19, 35], only L1

or L2 distance is used for measuring pose similarity. With
a L1 or L2 loss, we find that our model tends to gener-
ate poses conservatively (repeatedly) and fail to capture the
semantic relationship across motion appropriately. More-
over, the datasets generated by OpenPose [4, 5, 42] are very
noisy, as shown in Figure 5. Correcting inaccurate human
poses on a large number of videos is labor-intensive and un-
desirable: a two-minute video with 10 FPS will have 1200
poses to verify. To tackle these difficulties, we propose a
novel pose perceptual loss.

The idea of perceptual loss is originally studied in the
image domain, which is used to match activations in a vi-
sual perception network such as VGG-19 [32, 8]. To use
the traditional perceptual loss, we need to draw generated
skeletons on images, which is complicated and seemingly
suboptimal. Instead of projecting pose joint coordinates to
an image, we propose to directly match activations in a pose
recognition network that takes human skeleton sequences as
input. Such a network is mainly aimed at pose recognition
or prediction tasks, and ST-GCN [44] is a Graph Convo-
lutional Network (GCN) that is applicable to be a visual
perception network in our case. ST-GCN utilizes a spatial-
temporal graph to form the hierarchical representation of
skeleton sequences and is capable of automatically learn-
ing both spatial and temporal patterns from data. To test
the impact of the pose perceptual loss on our noisy dataset,
we prepare a 20-video dataset with many noises due to the
wrong pose detection of OpenPose. As shown in Figure 4,
our generator can stably generate poses with the pose per-
ceptual loss.

Given a pre-trained GCN network Φ, we define a collec-

tion of layers Φ as {Φl}. For a training pair (P,M), where
P is the ground truth skeleton sequence and M is the corre-
sponding piece of music, our perceptual loss is

LP =
∑
l

λl‖Φl(P )− Φl(G(M))‖1. (1)

Here G is the first-stage generator in our framework. The
hyperparameters {λl} balance the contribution of each layer
l to the loss.

5. Implementation
5.1. Pose Discriminator

To evaluate if a skeleton sequence is an excellent dance,
we believe the most indispensable factors are the intra-
frame representation for joint co-occurrences and the inter-
frame representation for skeleton temporal evolution. To
extract features of a pose sequence, we explore multi-
stream CNN-based methods and adopt the Hierarchical Co-
occurrence Network framework [20] to enable discrimina-
tors to differentiable real and fake pose sequences.

Two-Stream CNN. The input of the pose discriminator
is a skeleton sequence X . The temporal difference is inter-
polated to be of the same shape of X . Then the skeleton
sequence and the temporal difference are fed into the net-
work directly as two streams of inputs. Their feature maps
are fused by concatenation along channels, and then we use
convolutional and fully-connected layers to extract features.

5.2. Local Temporal Discriminator

One of the objectives of the pose generator is the tem-
poral coherence of the generated skeleton sequence. For
example, when a man moves his left foot, his right foot
should keep still for multiples frames. Similar to Patch-
GAN [14, 47, 40], we propose to use Local Temporal Dis-
criminator, which is a 1D version of PatchGAN to achieve
coherence between consecutive frames. Besides, the Local
Temporal Discriminator contains a trimmed pose discrimi-
nator and a small classifier.



Figure 4: In each section, the first image is a skeleton gener-
ated by the model without pose perceptual loss, and the sec-
ond image is a skeleton generated by the model with pose
perceptual loss according to the same piece of music.

5.3. Global Content Discriminator

Dance is closely related to music, and the harmony be-
tween music and dance is a crucial criterion to evaluate a
dance sequence. Inspired by [38], we proposed the Global
Content Discriminator to deal with the relationship between
music and dance.

As we mentioned previously, music is encoded as a se-
quence OM = {HM

1 , HM
2 , ...,HM

T }. Though GRU can
capture long term dependencies, it is still challenging for
GRU to encode the entire music information. In our ex-
periment, only using HM

T to represent music feature FM

will lead to a crash of the beginning part of the skele-
ton sequence. Therefore, we use the self-attention mech-
anism [22] to assign a weight for each hidden state and gain
a comprehensive embedding. In the next part, we briefly de-
scribe the self-attention mechanism used in our framework.

Self-attention mechanism. GivenOM ∈ RT×k, we can
compute its weight at each time step by

r = Ws2 tanh(Ws1O
M>), (2)

ai = − log

(
exp (ri)∑
j exp (rj)

)
, (3)

where ri is i-th element of the r while Ws1 ∈ Rk×l and
Ws2 ∈ Rl×1. ai is the assigned weight for i-th time
step in the sequence of hidden states. Thus, the music
feature FM can be computed by multiplying the scores
A = [a1, a2, ..., an] and OM , written as FM = AOM .

5.4. Other Loss Function

GAN loss Ladv . The Local Temporal Discriminator
(Dlocal) is trained on overlapping skeleton sequences that
are sampled using S(·) from a whole skeleton sequence.
The Global Content Discriminator (Dglobal) distinguishes
the harmony between the skeleton sequence and the input
musicm. Besides, we have x = G(m) and the ground truth
skeleton sequence p. We also apply a gradient penalty [13]

Figure 5: Noisy data caused by occlusion and overlapping.
For the first part of the K-pop dataset, there is a large num-
ber of such skeletons. For the second part of the K-pop
dataset, there are few inaccurate skeletons.

term inDglobal. Therefore, the adversarial loss is defined as

Ladv =Ep[logDlocal(S(p))]+

Ex,m[log[1−Dlocal(S(x))]]+

Ep,m[logDglobal(p,m)]+

Ex,m[log[1−Dglobal(x,m)]]+

wGPEx̂,m[(‖ 5x̂,m D(x̂,m)‖2 − 1)2].

(4)

where wGP is the weight for the gradient penalty term.
L1 distance LL1 . Given a ground truth dance skeleton

sequence Y with the same shape of X ∈ RT×2V , the re-
construction loss at the joint level is:

LL1
=

∑
j∈[0,2V ]

‖Yj −Xj‖1. (5)

Feature matching loss LFM . We adopt the feature
matching loss from [39] to stabilize the training of Global
Content Discriminator D:

LFM = Ep,m

M∑
i=1

‖Di(p,m)−Di(G(m),m)‖1. (6)

where M is the number of layers in D and Di denotes the
ith layer of D. In addition, we omit the normalization term
of the original LFM to fit our architecture.

Full Objective. Our full objective is

arg min
G

max
D
Ladv +wPLP +wFMLFM +wL1

LL1
. (7)

where wP , wFM , and wL1 represent the weights for each
loss term.

5.5. Pose to Video

Recently, researchers have been studying motion trans-
fer, especially for transferring dance motion between two
videos [7, 23, 40, 46]. Among these methods, we adopt the
approach proposed by Chan et al. [7] for its simplicity and
effectiveness. Given a skeleton sequence and a video of a
target person, the framework could transfer the movement
of the skeleton sequence to the target person. We used a
third-party implementation2.

2https://github.com/CUHKSZ-TQL/
EverybodyDanceNow_reproduce_pytorch

https://github.com/CUHKSZ-TQL/EverybodyDanceNow_reproduce_pytorch
https://github.com/CUHKSZ-TQL/EverybodyDanceNow_reproduce_pytorch


Category Number

Ballet 1165
Break 3171
Cha 4573

Flamenco 2271
Foxtrot 2981

Jive 3765
Latin 2205

Pasodoble 2945
Quickstep 2776

Rumba 4459
Samba 3143
Square 5649
Swing 3528
Tango 3321

Tap 2860
Waltz 3046

(a) Let’s Dance Dataset.

Category Number

Clean Train 1636
Clean Val 146

Noisy Train 656
Noisy Val 74

(b) K-pop.

Category Number

Pop 4334
Rock 4324

Instrumental 4299
Electronic 4333

Folk 4346
International 4341

Hip-Hop 4303
Experimental 4323

(c) FMA.

Table 1: The detail of our datasets. All the datasets are cut
into pieces of 5s. Number means the number of the pieces.
For Let’s Dance Dataset and FMA, 70% is for training, 5%
is for validation, and 25% is for testing.

6. Experiments

6.1. Datasets

K-pop dataset. To build our dataset, we apply Open-
Pose [4, 5, 42] to some online videos to obtain the skeleton
sequences. In total, We collected 60 videos about 3 min-
utes with a single women dancer and split these videos into
two datasets. The first part with 20 videos is very noisy, as
shown in Figure 5. This dataset is used to test the perfor-
mance of the pose perceptual loss on noisy data. 18 videos
of this part are for training, and 2 videos of this part are
for evaluation. The second part with 40 videos is relatively
clean and used to form our automatic dance video genera-
tion task. 37 videos of this part are for training, and 3 videos
of this part are for evaluation. The detail of this dataset is
shown in Table 1b.

Let’s Dance Dataset. Castro et al. [6] released a dataset
containing 16 classes of dance, presented in Table 1a.
The dataset provides information about human skeleton se-
quences for pose recognition. Though there are existing
enormous motion datasets [18, 30, 33] with skeleton se-
quences, we choose Let’s Dance Dataset to pre-train our
ST-GCN for pose perceptual loss as dance is different with
normal human motion.

FMA. For our cross-modal evaluation, the extraction
of music features is needed. To achieve this goal, we
adopt CRNN [9] and choose the dataset Free Music Archive

Metric Cross-modal BRISQUE

Rand Frame 0.151 –
Rand Seq 0.204 –
L1 0.312 40.66
Global D 0.094 40.93
Local D 0.068 41.46
Our model 0.046 41.11

Table 2: Results of our model and baselines. On the cross-
modal evaluation, lower is better. For BRISQUE, higher is
better. The details of the baselines are shown in Section 6.3.

(FMA) to train CRNN. In FMA, genre information and the
music content are provided for genre classification. The in-
formation of FMA is shown in Table 1c.

6.2. Experimental Setup

All the models are trained on an Nvidia GeForce GTX
1080 Ti GPU. For the first stage in our framework, the
model is implemented in PyTorch [28] and takes approxi-
mately one day to train for 400 epochs. For the hyperparam-
eters, we set V = 18, T = 50, t = 5, K = 16, S = 16000.
For the self attention mechanism, we set k = 256, l = 40.
For the loss function, the hyperparameters {λl} are set to
be [20, 5, 1, 1, 1, 1, 1, 1, 1] and wGP = 1, wP = 1, wFM =
1, wL1

= 200. Though the weight of L1 distance loss is rel-
atively large, the absolute value of the L1 loss is quite small.
We used Adam [17] for all the networks with a learning rate
of 0.003 for the generator and 0.003 for the Local Temporal
Discriminator and 0.005 for the Global Content Discrimi-
nator.

For the second stage that transfers pose to video, the
model takes approximately three days to train, and the hy-
perparameters of it adopt the same as [7]. For the pre-train
process of ST-GCN and CRNN, we also used Adam [17] for
them with a learning rate of 0.002. ST-GCN achieves 46%
precision on Let’s Dance Dataset. CRNN is pretrained on
the FMA, and the top-2 accuracy is 67.82%.

6.3. Evaluation

We will evaluate the following baselines and our model.

• L1. In this condition we just use L1 distance to con-
duct the generator.

• Global D. Based on L1, we add a Global Content Dis-
criminator.

• Local D. Based on Global D , we add a Local Tempo-
ral Discriminator.

• Our model. Based on Local D, we add pose percep-
tual loss. These conditions are used in Table 2.



Figure 6: Synthesized music video conditioned on the music “LIKEY” by TWICE. For each 5-second dance video, we show
4 frames. The top row shows the skeleton sequence, and the bottom row shows the synthesized video frames conditioned on
different target videos.

6.3.1 User Study

To evaluate the quality of the generated skeleton sequences
(our main contributions), we conduct a user study compar-
ing the synthesis skeleton sequence and the ground-truth
skeleton sequence. We randomly sample 10 pairs sequences
with different lengths and draw the sequences into videos.
To make this study fair, we verify the ground truth skele-
tons and re-annotate the noisy ones. In the user study, each
participant watches the video of the synthesis skeleton se-
quence and the video of the ground truth skeleton sequence
in random order. Then the participant needs to choose one
of the two options: 1) The first video is better. 2) The sec-
ond video is better. As shown in Figure 7, in 43.0% of the
comparisons, participants vote for our synthesized skeleton
sequence. This user study shows that our model can chore-
ograph at a similar level with real artists.

6.3.2 Cross-modal Evaluation

It is challenging to evaluate if a dance sequence is suitable
for a piece of music. To our best knowledge, there is no ex-
isting method to evaluate the mapping between music and
dance. Therefore, we propose a two-step cross-modal met-
ric, as shown in Figure 8, to estimate the similarity between
music and dance.

Given a training set X = {(P,M)} where P is a dance
skeleton sequence and M is the corresponding music. Then
with a pre-trained music feature extractor Em [9], we ag-
gregate all the music embeddings F = {Em(M),M ∈ X}
in an embedding dictionary.

The input to our evaluation is music Mu. With our gen-
erator G, we can get the synthesized skeleton sequence

Ours is better

Groud truth is better
57% 43%

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

Dancer Non-Dancer

Figure 7: Results of user study on comparisons between the
synthesized skeleton sequence and the ground truth. There
are 27 participants in total, including seven dancers. In
nearly half of the comparisons, users can not tell which
skeleton sequence is better given the music. To make the
results reliable, we make sure there is no unclean skeleton
in the study.

Pu = G(Mu). The first step is to find a skeleton sequence
that represents the music Mu. We first obtain the music
feature Fu by Fu = Em(Mu). Then let Fv be the nearest
neighbor of Fu in the embedding dictionary. In the end, we
use its corresponding skeleton sequence Pv to represent the
music Mu. The second step is to measure the similarity be-
tween two skeleton sequences with the novel metric learn-
ing objective based on a triplet architecture and Maximum
Mean Discrepancy, proposed by Coskun et al. [10]. More
implementation details about this metric will be shown in
supplement materials.

6.3.3 Quantitative Evaluation

To evaluate the quality of results of the final method in com-
parison to other conditions, Chan et al. [7] propose to make
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Figure 8: Cross-modal evaluation. We first project all the music pieces in the training set of the K-pop dataset into an
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Figure 9: Our synthesized music video with a male student as a dancer.

a transfer between the same video since there is no ref-
erence for the synthesized frame and use SSIM [41] and
LPIPS [45] to measure the videos. For our task, such met-
rics are useless because there are no reference frames for the
generated dance video. So we apply BRISQUE [26], which
is a no-reference Image Quality Assessment to measure the
quality of our final generated dance video.

As shown in Table 2, by utilizing the Global Content Dis-
criminator and the Local Temporal Discriminator, even for
a single frame result, the score is better. For the addition of
the pose perceptual loss, the poses become plausible, and
then transferring the diverse poses to the frames may lead
to the decline of the score. Furthermore, more significant
differences can be observed in our video. To validate our
proposed evaluation, we also try two random conditions:

• Rand Frame. Randomly select 50 frames from the
training dataset for the input music instead of feeding
the music into the generator.

• Rand Seq. Randomly select a skeleton sequence from
the training dataset for the input music instead of feed-
ing the music into the generator.

To make the random results stable, we make ten ran-
dom processes and get the average score.

7. Conclusion

We have presented a two-stage framework to generate
dance videos, given any music. With our proposed pose per-
ceptual loss, our model can be trained on dance videos with
noisy pose skeleton sequence (no human labels). Our ap-
proach can create arbitrarily long, good-quality videos. We
hope that this pipeline of synthesizing skeleton sequence
and dance video combining with pose perceptual loss can
support more future work, including more creative video
synthesis for artists.
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